898 research outputs found

    Civil airports from a landscape perspective: A multi-scale approach with implications for reducing bird strikes

    Get PDF
    Collisions between birds and aircraft are a global problem that jeopardizes human safety and causes economic losses. Although landscape features have been suggested as one of a number of factors contributing to bird strikes, no evidence exists to support this suggestion. We investigated the effects of landscape structure on the adverse effect (AE) bird strike rate at 98 civil airports in the United States. The number of reported AE bird strikes was standardized by air carrier movements between 2009 and 2015. Land use structure and composition were quantified within 3, 8, and 13 km radii extents from airports. We predicted large amounts and close arrangements of aquatic habitat, open space, and high landscape diversity would positively influence the AE strike rate based on the habitat requirements of many species hazardous to aviation. The rate of AE bird strikes was positively influenced by large areas and close proximity of wetlands, water, and cultivated crops at the 8- and 13- km extents. Within 3 km of an airport, increasing landscape diversity and the amount of crop area increased the strike rate. We conclude that landscape structure and composition are predictors of the AE bird strike rate at multiple spatial scales. Our results can be used to promote collaborative management among wildlife professionals, airport planners, and landowners near airports to create an environment with a lower probability of an AE bird strike. Specific priorities are to minimize the area of crops, especially corn, and increase the distances between patches of open water

    Multiple-charge transfer and trapping in DNA dimers

    Full text link
    We investigate the charge transfer characteristics of one and two excess charges in a DNA base-pair dimer using a model Hamiltonian approach. The electron part comprises diagonal and off-diagonal Coulomb matrix elements such a correlated hopping and the bond-bond interaction, which were recently calculated by Starikov [E. B. Starikov, Phil. Mag. Lett. {\bf 83}, 699 (2003)] for different DNA dimers. The electronic degrees of freedom are coupled to an ohmic or a super-ohmic bath serving as dissipative environment. We employ the numerical renormalization group method in the nuclear tunneling regime and compare the results to Marcus theory for the thermal activation regime. For realistic parameters, the rate that at least one charge is transferred from the donor to the acceptor in the subspace of two excess electrons significantly exceeds the rate in the single charge sector. Moreover, the dynamics is strongly influenced by the Coulomb matrix elements. We find sequential and pair transfer as well as a regime where both charges remain self-trapped. The transfer rate reaches its maximum when the difference of the on-site and inter-site Coulomb matrix element is equal to the reorganization energy which is the case in a GC-GC dimer. Charge transfer is completely suppressed for two excess electrons in AT-AT in an ohmic bath and replaced by damped coherent electron-pair oscillations in a super-ohmic bath. A finite bond-bond interaction WW alters the transfer rate: it increases as function of WW when the effective Coulomb repulsion exceeds the reorganization energy (inverted regime) and decreases for smaller Coulomb repulsion

    Theory of sound attenuation in glasses: The role of thermal vibrations

    Get PDF
    Sound attenuation and internal friction coefficients are calculated for a realistic model of amorphous silicon. It is found that, contrary to previous views, thermal vibrations can induce sound attenuation at ultrasonic and hypersonic frequencies that is of the same order or even larger than in crystals. The reason is the internal-strain induced anomalously large Gr\"uneisen parameters of the low-frequency resonant modes.Comment: 8 pages, 3 figures; to appear in PR

    A Virtual Conversational Agent for Teens with Autism: Experimental Results and Design Lessons

    Full text link
    We present the design of an online social skills development interface for teenagers with autism spectrum disorder (ASD). The interface is intended to enable private conversation practice anywhere, anytime using a web-browser. Users converse informally with a virtual agent, receiving feedback on nonverbal cues in real-time, and summary feedback. The prototype was developed in consultation with an expert UX designer, two psychologists, and a pediatrician. Using the data from 47 individuals, feedback and dialogue generation were automated using a hidden Markov model and a schema-driven dialogue manager capable of handling multi-topic conversations. We conducted a study with nine high-functioning ASD teenagers. Through a thematic analysis of post-experiment interviews, identified several key design considerations, notably: 1) Users should be fully briefed at the outset about the purpose and limitations of the system, to avoid unrealistic expectations. 2) An interface should incorporate positive acknowledgment of behavior change. 3) Realistic appearance of a virtual agent and responsiveness are important in engaging users. 4) Conversation personalization, for instance in prompting laconic users for more input and reciprocal questions, would help the teenagers engage for longer terms and increase the system's utility

    Two state scattering problem to Multi-channel scattering problem: Analytically solvable model

    Full text link
    Starting from few simple examples we have proposed a general method for finding an exact analytical solution for the two state scattering problem in presence of a delta function coupling. We have also extended our model to deal with general one dimensional multi-channel scattering problems

    Mitigation of Double-crested Cormorant Impacts on Lake Ontario: From Planning and Practice to Product Delivery

    Get PDF
    The New York State Department of Environmental Conservation initiated a Double-crested Cormorant (Phalacrocorax auritus) control program in the eastern basin of Lake Ontario to mitigate cormorant impacts in 1999. Key objectives included improving the quality of Smallmouth Bass (Micropterus dolomieu) and other fisheries, restoring the structure and function of the warmwater fish community and reducing cormorant impacts to nesting habitats of other colonial waterbird species. In eight years of intensive control, cormorant numbers declined, with a corresponding reduction in estimated fish consumption. Diversity and numbers of co-occurring waterbirds either increased or have not been shown to be negatively impacted by management. Woody vegetation favorable to Black-crowned Night-Herons (Nycticorax nycticorax) has been maintained. A ca. 2.5-fold increase in the abundance of Smallmouth Bass abundance in assessment nets over the last seven years is a sign of improved recruitment to the fishery. Since the target population level of 4,500 to 6,000 cormorants has essentially been achieved, the eastern Lake Ontario cormorant program is expected to shift in 2007 from a population reduction focus towards a less intensive program intended to prevent population resurgence

    Mitigation of Double-crested Cormorant Impacts on Lake Ontario: From Planning and Practice to Product Delivery

    Get PDF
    The New York State Department of Environmental Conservation initiated a Double-crested Cormorant (Phalacrocorax auritus) control program in the eastern basin of Lake Ontario to mitigate cormorant impacts in 1999. Key objectives included improving the quality of Smallmouth Bass (Micropterus dolomieu) and other fisheries, restoring the structure and function of the warmwater fish community and reducing cormorant impacts to nesting habitats of other colonial waterbird species. In eight years of intensive control, cormorant numbers declined, with a corresponding reduction in estimated fish consumption. Diversity and numbers of co-occurring waterbirds either increased or have not been shown to be negatively impacted by management. Woody vegetation favorable to Black-crowned Night-Herons (Nycticorax nycticorax) has been maintained. A ca. 2.5-fold increase in the abundance of Smallmouth Bass abundance in assessment nets over the last seven years is a sign of improved recruitment to the fishery. Since the target population level of 4,500 to 6,000 cormorants has essentially been achieved, the eastern Lake Ontario cormorant program is expected to shift in 2007 from a population reduction focus towards a less intensive program intended to prevent population resurgence

    Quantum Origins of Molecular Recognition and Olfaction in Drosophila

    Full text link
    The standard model for molecular recognition of an odorant is that receptor sites discriminate by molecular geometry as evidenced that two chiral molecules may smell very differently. However, recent studies of isotopically labeled olfactants indicate that there may be a molecular vibration-sensing component to olfactory reception, specifically in the spectral region around 2300 cm−1^{-1}. Here we present a donor-bridge-acceptor model for olfaction which attempts to explain this effect. Our model, based upon accurate quantum chemical calculations of the olfactant (bridge) in its neutral and ionized states, posits that internal modes of the olfactant are excited impulsively during hole transfer from a donor to acceptor site on the receptor, specifically those modes that are resonant with the tunneling gap. By projecting the impulsive force onto the internal modes, we can determine which modes are excited at a given value of the donor-acceptor tunneling gap. Only those modes resonant with the tunneling gap and are impulsively excited will give a significant contribution to the inelastic transfer rate. Using acetophenone as a test case, our model and experiments on D. melanogaster suggest that isotopomers of a given olfactant give rise to different odorant qualities. These results support the notion that inelastic scattering effects play a role in discriminating between isotopomers, but that this is not a general spectroscopic effectComment: 7 pages, 3 figure

    Impacts of biomass production at civil airports on grassland bird conservation and aviation strike risk

    Get PDF
    Growing concerns about climate change, foreign oil dependency, and environmental quality have fostered interest in perennial native grasses (e.g., switchgrass [Panicum virgatum]) for bioenergy production while also maintaining biodiversity and ecosystem function. However, biomass cultivation in marginal landscapes such as airport grasslands may have detrimental effects on aviation safety as well as conservation efforts for grassland birds. In 2011–2013, we investigated effects of vegetation composition and harvest frequency on seasonal species richness and habitat use of grassland birds and modeled relative abundance, aviation risk, and conservation value of birds associated with biomass crops. Avian relative abundance was greater in switchgrass monoculture plots during the winter months, whereas Native Warm-Season Grass (NWSG) mixed species plantings were favored by species during the breeding season. Conversely, treatment differences in aviation risk and conservation value were not biologically significant. Only 2.6% of observations included avian species of high hazard to aircraft, providing support for semi-natural grasslands as a feasible landcover option at civil airports. Additionally, varied harvest frequencies across a mosaic of switchgrass monocultures and NWSG plots allows for biomass production with multiple vegetation structure options for grassland birds to increase seasonal avian biodiversity and habitat use
    • …
    corecore